Future Technologies Group :rr}| ‘.’.\.

NetLogger: Distributed System
Monitoring and Analysis

Brian L. Tierney

Ernest Orlando Lawrence Berkeley National Laboratory

NetLogger

-~y

Outline ceceeny] i

Overview

— What is NetLogger?

— What is NetLogger good for?

— What is NetLogger not good for?
NetLogger Components

— message format

— instrumentation library

— system monitoring tools

— visualization tools

Case Studies

— Radiance luminosity application
— Parallel remote data server (DPSS)
Current Work

Current Issues

NetLogger I

Overview B!
|

e The Problem

— When building distributed systems, we often
observe unexpectedly low performance
* the reasons for which are usually not obvious

— The bottlenecks can be in any of the following
components:
* the applications
 the operating systems

* the disks or network adapters on either the sending or
receiving host

« the network switches and routers, and so on

e The Solution:

* Highly instrumented systems with precision timing
information and analysis tools

NetLogger

-~y

Bottleneck Analysis ceceeny] i

* Distributed system users and developers often
assume the problem is network congestion

— This is often not true

* In our experience tuning distributed applications,
performance problems are due to:

— network problems: 40%
— host problems: 20%

— application design problems/bugs: 40%
* 50% client , 50% server
* Therefore it is equally important to instrument the
applications

NetLogger

NetLogger Toolkit recern) ;

BERKELEY LAB

 We have developed the NetLogger Toolkit

— A set of tools which make it easy for distributed
applications to log interesting events at every
critical point

— NetLogger also includes tools for host and
network monitoring

 The approach is novel in that it combines network,
host, and application-level monitoring to provide a
complete view of the entire system

NetLogger

Why “NetLogger”? ;m

BERKELEY LAB

« The name “NetLogger” is somewhat misleading

— Should really be called: “Distributed
Application, Host, and Network Logger”

* “NetLogger” was a catchy name that stuck

I NetLogger I

-~y

When to use NetLogger reecer?]

BERKELEY LAB

 When you want to:

— do performance/bottleneck analysis on
distributed applications

— determine which hardware components to
upgrade to alleviate bottlenecks

— do real-time or post-mortem analysis of
applications

— correlate application performance with system
information (ie: TCP retransmission's)

* works best with applications where you can follow
a specific item (data block, message, object)
through the system

NetLogger

-~y

When NOT to use NetLogger ceceeed] i
99 :\|\

[
BERKELEY LAaB

* Analyzing massively parallel programs (e.g.: MPI)

— Current visualization tools don’t scale beyond
tracking about 20 types of events at a time

* Analyzing many very short events

— system will become overwhelmed if too many
events

— we typically use NetLogger to monitor events
that take > .5 ms

— e.g: probably don’t want to use to instrument
the UNIX kernel

NetLogger I

-~y

NetLogger Components reeeee

BERKELEY LAB

A
in

* NetLogger Toolkit contains the following
components:

— NetLogger message format

— NetLogger client library

— NetLogger visualization tools

— NetLogger host/network monitoring tools

* Additional critical component for distributed
applications:

— NTP (Network Time Protocol) is required to
synchronize the clocks of all systems

NetLogger

-~y

NetLogger Message Format ’\|

BERKELEY LAaB

A
I

 We are using the IETF draft standard Universal Logger
Message (ULM) format (http://www.ietf.org/internet-
drafts/draft-abela-ulm-05.txt):

— alist of “field=value” pairs

— required fields: DATE, HOST, PROG, and LVL
* LVL is the severity level (Emergency, Alert, Error, Usage,
etc.)
— followed by optional user defined fields

* NetLogger adds these required fields:

* NL.EVNT, a unique identifier for the event being logged

—e.g.: SERVER_IN, VMSTAT_USER_TIME,
NETSTAT_RETRANSSEG

I NetLogger I

-~y

NetLogger Message Format | cerecey
2 -

 Sample NetLogger ULM event:

DATE=19980430133038. 55784 HOST=f o0o. | bl . gov
PROG=t est prog LVL=Usage NL. EVNT=SEND DATA
SEND. SZ=49332

— This says program named testprog on host
foo.Ibl.gov performed event named SEND_DATA,
size = 49332 bytes, at the date/time given

e User-defined data elements (any number) are used to
store information about the logged event - for example:

* NL.EVNT=SEND_DATA SEND.SZ=49332
—the number of bytes of data sent

* NL.EVNT=NETSTAT_RETRANSSEGS NS.RTS=2
—the number of TCP retransmits since the previous event

NetLogger

-~y

Other Formats ceceeny] i

 We'd like to convince everyone to use the
ULM/NetLogger format for logging

— This way we can all share log file management
and visualization tools

* Probably not realistic

— Working on filters to convert the following
to/from NetLogger format
» Pablo, NWS. Surveyor?, others?

— Also working on a binary representation for
more efficient use of network and disk

* If ULM is not adequate, whose format is better?

NetLogger

NetLoqgger AP B!
99

* NetLogger Toolkit includes application libraries for
generating NetLogger messages
— Can send log messages to:
* file
* host/port (netlogd)
 syslogd
* memory, then one of the above

* C, C++, Java, Perl, and Python APIs are currently

supported
NetLogger API ereeny]
—

* Only 6 simple calls:
— NetLoggerOpen()
» create NetLogger handle, specify logging destination
— NetLoggerWrite()
* get timestamp, build NetLogger message, send to destination
— NetLoggerGTWrite()
* must pass in results of Unix gettimeofday() call
— NetLoggerFlush()
 flush any buffered message to destination

— NetLoggerSetLevel()
* set ULM severity level

— NetLoggerClose()
« destroy NetLogger handle

NetLogger I

-~y

Sample NetLogger Use ceree?]

BERKELEY LAB

| p = Net Logger Qpen(net hod, prognanme, NULL,
host nane, NL_PORT);

whil e (!done)

{
Net Logger Wite(l p, "EVENT_START",
"TEST. SI ZE=%", si ze);
/* performthe task to be nonitored */
done = do_sonet hi ng(data, size);
Net Logger Wite(lp, "EVENT_END");
}

Net Logger Cl ose(| p);

NetLogger

-~y

NetLogger Host/Network Tools | receeery pi
99 :%

BERKELEY LAB

 Wrapped UNIX network and OS monitoring tools to log
“interesting” events using the same log format

— netstat (TCP retransmissions, etc.)
— vmstat (system load, paging, etc.)
— jostat (disk activity)

— ping

« These tools have been wrapped with Perl or Java
programs which:

— parse the output of the system utility
— build NetLogger messages containing the results

NetLogger I

-~y

NetLogger Network Tools rreee?]
2

* NetLogger tool for SNMP queries
— Usage: nl_snmpget hostname object [port]

« Examples:
— host monitoring
* nl _snnpget uni x_host sysNane
— Returns: system.sysName.0 = wakko.Ibl.gov
— router monitoring
* nl _snnpget routernane iplnDelivers 3
—Returns: tcp.tcpinErrs.3 = 4000
— ATM switch monitoring
* nl _snnpget sw tchnane sonet Li neFEBEs
* nl _snnpget swi tchnane portTransm ttedCells

NetLogger

-~y

NetLogger Events ereeny]
2

* Logged events are correlated with system
behavior to characterize the performance of the
system during actual operation

— facilitates bottleneck identification

e Using “life-lines” to visualize the data flow is the
key to easy interpretation of the results.

* We believe this type of monitoring is a critical
component to building reliable high performance
data intensive systems

I NetLogger I

-~y

NetLogger Event “Life Lines” ceceeet] i
99

End Processing / / [
Begin Processing
5 | | /
& End Read
N / /
Begin Read
Request data / /
time
1 NetLogger

-~y

Event Id ceceeny] i

* In order to associate a group of events into a
“lifeline”, you must assign an event ID to each
NetLogger event

« Sample Event Ids
— file name
— block ID
— frame ID
— user name
— host name
— etc.

I NetLogger I

-~y

Sample NetLogger Use ceceeer] o
P 99

| p = Net Logger Open(et hod, prognanme, NULL, hostnane, NL_PORT);
for (i=0; i< numblocks; i++) {
Net LoggerWite(lp, “START_READ,
“BLOCK | D=%l BLOCK_SI ZE=%", i, size);
read_bl ock(i);
Net LoggerWite(l p, “END_READ,

“BLOCK | D=%l BLOCK_SI ZE=%", i, size);
Net LoggerWite(lp, “START_PROCESS’,
“BLOCK | D=%l BLOCK_SI ZE=%l", i, size);

process_bl ock(i);
Net LoggerWite(lp, “END PRCCESS’,

“BLOCK_| D=9@l BLOCK Sl ZE=%d”, i, size);
Net Logger Wite(lp, “START_SEND’,
“BLOCK_| D=%@ BLOCK Sl ZE=%d”, i, size);

send_bl ock(i);
Net Logger Wite(lp, “END_SEND’,

“BLOCK | D=% BLOCK_ SIZE=%l", i, size);
}
Net Logger Cl ose(l p);
| NetLogger

-~y

NetLogger Visualization Tools | ey

* Exploratory, interactive analysis of the log data has
proven to be the most important means of identifying
problems

— this is provided by nlv (NetLogger Visualization)

e nlvfunctionality:

— can display several types of NetLogger events at
once

— user configurable: which events to plot, and the
type of plot to draw (lifeline, load-line, or point)

— play, pause, rewind, slow motion, zoom in/out, and
So on

— nlv can be run post-mortem or in real-time

* real-time mode done by reading the output of netlogd as it
is being written

I NetLogger

NLV Graph Types Ty
ph Typ

* nlv supports graphing of “points”, “load-lines”, and
“lifelines”

event | point
event | s O TS A 0N Joad-line
event B /

event T ! l lifeline
event C
event B /
event & "
tT1e
NetLogger

NLV ecee) ‘.’.\.

— HetLogger [T
File Edit View Options Help
Metlogger Wisualization Mienn Bar
FILE_RELERSED — Event keywords
FILE_RETRIEVED
FILE_PUSHED Graph
FILE_IH_CACHE
STRCE_FINISHED Legend
CACHING_EEQUEST Windowr size
L Al Mlax window
I T T T
1} 1. 2 3 4 :’I. Back 1 window
T, PlayiPanse
Servers: _ A _PE0r naet —oarld # rfp_pending ” Forward 1 window
Window (s? Max (=0 « i » ¢ opeed ”
5.0 150 P T I Gliegegm
I i == L L —1 I s 1
0.0 | o to en
- Zoom cepth=0

§Eﬁtu3: Pavu=ed

Avg, data density Indexer Make window = zoom

Status msg Yo are here g sty line

I NetLogger

~

NLV Zoom Feature ‘(ﬁ

= NetLogger O O T
File Edit View Options Z00H BOX Help

ﬂ:t:ogger “isualization

STAGE_FINISHED —

CACHING_BEQUEST —)

ol %w
T T
o 500 1000
time(s)

sovere: I B
) ~ Speed

Window (s» Hax €sd + I 2 ||| » I. ,'l
1362,6 i:o_o|

1362,6

Z00H STACK IS

Iuﬁ] — _l—.ilil \l EMPTY
e, Qo))

Statusi Faused

NetLogger

NLV with lifeline, load-line, and =

A
Frreeeee ‘m

oint events

[=] Netlogger E
File Data Options Help

NetlLogger Visualization

TY¥_TILE_OUT_TEXCACHE —

TV_TTLE_TH_TEXCACHE —

TV_TILE_EEAD —

APP_RECELVE —

155_START_WRITE — [(fi

155_EHD_READ —

155_START_READ —

1SS_SERV_IN —

155_MASTER_OUT —

155_MASTER_IN —

APP_SENT —

TV_TILE_REQ —

HETSTAT_BETBRNSSEGS —|

VHMSTAT_WSER_TIME —

VMSTAT_S¥S_TIME —

T T T T T
7018000 7020000 7022000 7024000 7026000

time({ms)
Status: Paused @ I Analysis piN| Time Window {(ms)
-1 Auto—speed UOEED
@ ~y]

I
%I SIEEZd =4 ilﬂllﬂ 7017053

NetLogger

I NetLogger

-~y

Example NLV Configuration ceceeet] i
P 9

display server data as a “lifeline”
set +SERVER READ
type line

lifeline constructed from nessages fromthe sane client
and server

id [CLIENT_HOST DPSS. SERV]

messages with the sanme DPSS. SERV get the sane col or
group DPSS. SERV

[+APP_SENT +DPSS_SERV_| N +DPSS_START READ
+DPSS_END _READ +DPSS_START WRI TE +APP_RECE! VE]

-~y

Network Time Protocol reecce?]

* For NetLogger timestamps to be meaningful, all
systems clocks must be synchronized.

— NTP is used to synchronize time of all hosts in
the system.

—NTP is from Dave Mills, U. of Delaware
(http://www.eecis.udel.edu/~ntp/)

— Must have NTP running on one or more primary
servers, and on a number of local-net hosts,
acting as secondary time servers

— typically get clock synchronized to within 1
millisecond of each other

NetLogger I

How to Instrument Your /“\l

A
f(rreeer ‘||||

Application

* You'll probably want to add a NetLogger event to the
following places in your distributed application:

— before and after all disk 1/O
— before and after all network 1/0
— entering and leaving each distributed component

— before and after any significant computation
* e.g.: an FFT operation

— before and after any significant graphics call
* e.g.: certain CPU intensive OpenGL calls

e This is usually an iterative process

— add more NetLogger events as you zero in on the
bottleneck

NetLogger

Example 1: Parallel Visualization ’“\l A

r

Application

 Radiance is a suite of programs for the analysis
and visualization of lighting in design.
— Inputincludes the scene geometry, materials, luminance,
time, date, and sky conditions
 Radiance has been adapted at LBNL to run on
multiple UNIX workstations
— The image is broken into many small pieces, and
illumination calculations are performed for each piece
independently
* Used NetLogger to measure:
— overall system throughput,
— latency for each stage of getting data, processing it, and
writing it
— patterns of latency which reflect resource contention and
other interaction delays

I NetLogger I

~

Radiance Instrumentation Points | e

BERKELEY LAB

A
i

Y

®

Client

Master
|

W(;ﬁer: Wo?f/er:
Projection Projection
& &

%)
Worker:
Projection

%)

Worker: Ray Worker: Ray Worker: Ray
Tracer Tracer Tracer

@ = monitoring point

NetLogger

NetLogger Radiance Results: /“\l
Before Tuning —

MetLogger Wisualization

A
I

S_AFTER_WRITE —
5_BEFORE_WBITE —|
S_AFTER_ETBACE —|

S_BEFORE_ETBACE —|

S_AFTER_PEROJECT —|

S_BEFORE_PROJEC —|

S_AFTER_READ —

5_BEFORE_FERAD — e
£_EKD —
C_AFTER_RERD — //_/J
C_AFTER_WBITE — /
©_BEFORE_WEITE —
| | |
1 B 5 7
time(s)
Servers: o o o

| NetLogger |

NetLogger Radiance Results: “
After Tuning

MetLagger Vizualization

5_AFTER_WRITE —|
5_BEFORE_WRITE —
5_AFTER_ETRACE —
§_BEFORE_BTRACE —
§_AFTER._PROJECT —
5_BEFORE_FROJEC —
5_AFTEF. BEAD —

5_BEFORE_BRERD — ﬂ

C_EHD —|

C_RFTER_BERD —

C_AFTER_WBITE —|

C_EEFODE_WRITE

6 6.5 7
time(s)

Servers: I client

NetLogger

Example 2: Parallel Data Block
Server /\'

EEEEEEE

 The Distributed Parallel Storage Server (DPSS)

— provides high-speed parallel access to remote
data

— Unique features of the DPSS:

* On a high-speed network, can actually access remote
data faster that from a local disk

—57 MB/sec vs 10 MB/sec

* NetLogger was used for performance tuning and
debugging of the DPSS

NetLogger I

~

DPSS Cache Architecture cecceed] fi

data blocks

Client Apylication

N

P llel
. o aralle
data blocks | ioks

DPSS Server ———

Paraflel

Disks
N—

Logical Block data blocks

Requests

Parallel
Disks

DPSS Master

Y logical to physical
block lookup

Y access control

Y load balancing

DPSS Server

NetLogger I

-~

DPSS Instrumentation eeecsd] i

from other DPSS

servers
Q\ ©
N\ AR
0 5‘3*
o
Client)
Application DPSS Master

J to other
/\t clients
N

Block DPSS Data Server Block
Request Writer
Thread Thread

- = —
----------------------’

Shared Memory Cach

isk Dj Disk Disk
Re Read Read Read
Thread Thread Thread Thread
— — — — — — ——
@ = monitoring point S S S S
Disk Disk Disk Disk

NetLogger

-~y

NetLogger Results for the DPSS | ceceeery i
27

F: time for 20 blocks to get from one server {rurrant servers arg more than
wtiter to the application reader wice this rate)
total: 204 ms, avg 102 me JE— .
385 Mb/sec

TCP_retrans

app_receive

so00 |
| E: time to read 20 blocks from three disks

ldﬁ total123 ms, avg 6.15 ms —-
0 & MEBEyfzec (63.7 Mb/sec)

fiet transit
start_write
wrile quene
end_read
‘E |
.g disk read | G:cache hits
(zeto read |
'Eﬁ start_read : time
£ y
Eread quette 1A ' ‘ 5
5 |
= q [:
server_m | B: typical ! i
= . . : disk read: | 1
net transit : ; B frﬁ::;‘ﬂ‘ P :
: - -l - .
m aster_out [P % ms I : A
I . I }"ff .
(i ; : C: 20 block average time to write | ! 0
i e xlate J,' - blocks to network: Ii"" :
master_in 4 HELE) | v (urrent -
I 1 B
; . Jug i »
o | D: 20 block average titme spent in | '/ length of the DEE “iss3log” —
net transit ; | <= read gquene: 5 ms =3 | “pipeline” (7 60 ms) | about 30ms) 2 log” - - -
' ' -'
app_send L B B s s | L I LI N | LI R B
: EEEIEI
|
\

Time (ms)

NetLogger

NetLogger Results for the DPSS | —

A
frrreeer ‘m

over a WAN

“tinc.neticp fetranslog” “foc.serv_flushlog” & “trlogeds™
“ede net.top.rdtrans log™ —e— “bdeserv_flushlog™ s “T\:’log uswes}: +
“uswestnettepretanslog” —s— @ “uswestserv_flushlog” o ‘tvlog tioe” —=—

TCP retrans

app receive

start write

end read

start read

server in

master out

master in |...

app send
0 1,000 2,000 3,000 4,000 5,000

time (ms)

I NetLogger I

~

NLV of DPSS with a HENP client | seeeed

BERKELEY LAB

Hetlogger
File Data Options Help

MetlLogger Visualization

NetLogger |

-~

Current Work: JAMM ceceesd]

BERKELEY LAB

« Java Agents for monitoring and management
(JAMM)

— Java RMI-based agents are used to start up
NetLogger versions of system tools

* netstat, vmstat, uptime, xntpdc, ping, netperf,
etc.

* Monitoring can be based on application use

— e.g.: only do monitoring while a client is
connected to a server

 For more info see: http://www-didc.lbl.gov/ JAMM/

NetLogger

Current Work ’«\|)
—]

* NetLogger enhancements:

— adding Globus security

* plan to use GlobuslO for sending NetLogger
messages to netlogd

— binary transmission/storage format

* Deployment plan
— SNMP-based monitoring goes on all the time

— application/host monitoring triggered by the
application/user

Open Issues _—

* Log collection/archive service

— netlogd to afile not adequate, need to send
monitoring data to some kind of database (LDAP?)

* multicast ability?

— Need to simultaneously send to archive and to one
or more nlv session

* how to correlate archived monitoring data with network
configuration data? (i.e.: traceroute)

* how to map application traffic to a specific
switch/router port?

* Integration with other tools
— Pablo, NWS, Surveyor, etc.

NetLogger I

Getting NetLogger recern) ‘.’.\1

BERKELEY LAB

e Source code and some precompiled binaries are
available at:

— http://www-didc.lbl.gov/NetLogger

e Solaris, Linux, and Irix versions of nlv are
currently supported

I NetLogger I

